哥德巴赫賓果
哥德巴赫猜想(Goldbach's conjecture)是數論中存在最久的未解問題之一。這個猜想最早出現在1742年普魯士數學家克里斯蒂安·哥德巴赫與瑞士數學家萊昂哈德·歐拉的通信中。用現代的數學語言,哥德巴赫猜想可以陳述為:
“ 任一大於2的偶數,都可表示成兩個質數之和。 ”
結合哥德巴赫猜想,透過質數安排規劃,然後依據老師抽出的數字進行質數加法組成來圈選數字。如何規劃數字及分析數字的質數組合是額外需要思考探究的。
基本遊戲規則:
1. 請學生將質數填入空格中,玩家可以寫下2~37內任意質數
2. 但每個質數最多只能填寫五次。
3. 由老師當「裁判」,喊16~36任一個整數(整數範圍可以更改,但建議不要太小。)
4. 老師喊出數字可由2~3個質數相加,看自己的表內是否有那塞個數,有的話就可以畫掉,若沒有就不能畫掉。
1. 直到有同學先連成六個成一直線(直行、橫列或對角線均可)的直線三條,則該同學即可獲勝。
進階遊戲規則:
1. 請學生將質數填入空格中,玩家可以寫下2~37內任意質數
2. 但每個質數最多只能填寫五次。
3. 由老師當「裁判」,喊20~40任一個偶數(整數範圍可以更改,但建議不要太小。)
4. 老師喊出數字只能由2個質數相加,看自己的表內是否有那塞個數,有的話就可以畫掉,若沒有就不能畫掉。
5. 直到有同學先連成六個成一直線(直行、橫列或對角線均可)的直線三條,則該同學即可獲勝。
遊戲策略:
1、學生可以先再進行數字分拆整理。將所有數字可以分拆成的組數。
2、透過分析整理,思考填寫質數的數量及類別。
3、依據老師喊出數字進行圈選。